Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy.
نویسندگان
چکیده
Photoactive yellow protein is the protein responsible for initiating the "blue-light vision" of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This "incoherent" manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I(0) and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates.
منابع مشابه
Hydrogen bonds and proton transfer in the photoisomerization of Photoactive Yellow Protein
Photoactive yellow protein (PYP) is the protein responsible for the negative phototaxis of Halorhodospira halophila. The absorption of blue light of its chromophore, p-coumaric acid, triggers a photocycle in PYP, initiated by trans-cis isomerization of its chromophore. Pump-probe spectroscopy in the visible reveals that proline at position 68 is responsible for the high efficiency of isomerizat...
متن کاملPhotoisomerization and photoionization of the photoactive yellow protein chromophore in solution.
Dispersed pump-dump-probe spectroscopy has the ability to characterize and identify the underlying ultrafast dynamical processes in complicated chemical and biological systems. This technique builds on traditional pump-probe techniques by exploring both ground- and excited-state dynamics and characterizing the connectivity between constituent transient states. We have used the dispersed pump-du...
متن کاملUltrafast dynamics of isolated model photoactive yellow protein chromophores: "Chemical perturbation theory" in the laboratory.
Pump-probe and pump-dump probe experiments have been performed on several isolated model chromophores of the photoactive yellow protein (PYP). The observed transient absorption spectra are discussed in terms of the spectral signatures ascribed to solvation, excited-state twisting, and vibrational relaxation. It is observed that the protonation state has a profound effect on the excited-state li...
متن کاملInitial photoinduced dynamics of the photoactive yellow protein.
The photoactive yellow protein (PYP) is the photoreceptor protein responsible for initiating the blue-light repellent response of the Halorhodospira halophila bacterium. Optical excitation of the intrinsic chromophore in PYP, p-coumaric acid, leads to the initiation of a photocycle that comprises several distinct intermediates. The dynamical processes responsible for the initiation of the PYP p...
متن کاملReaction pathways of photoexcited retinal in proteorhodopsin studied by pump-dump-probe spectroscopy.
Proteorhodopsin (pR) is a membrane-embedded proton pump from the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization on the femtosecond to picosecond time scales. Here, we report a study on the photoisomerization dynamics of the retinal chromophore of pR, using dispersed ultrafast pump-dump-probe spectroscopy. The app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 87 3 شماره
صفحات -
تاریخ انتشار 2004